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Some Observations on the
Generalized Conjugate Gradient Method
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YALE UNyIVESITY, New HAVEN, CT 66&20/USA

1. Introduction

Consider the system of linear equations

A -b(1

where the coefficient matrix A is large and sparse and has positive definite symmetric part

M - (A A')/2. In this paper, we compare two methods for Solving such system, the

generalized conjugate gradient method of Concus and Golub 121 and Widlund [101 and Craig's

method (see 181) applied to a symmetrically preconditioned auxiliary system.

Notation: (v,z) denotes the Euclidean inner-product Vz and 1.-I the corresponding norm. If Q
is a symmetric positive definite matrix, then (1,z), denotes the Q-inme product (Qv,z) ad11,
the corresponding norm; Q112 denotes any square root of Q; and Q-1/ denotes [Q'121'1. Let

A - M-N, whence -N -(A-A')/2 is the skew-symmetric part of A; let K -WN; and let

AUI-I(IIM.

* 2. The Generalized Conjugate Gradient Method

Concus and Golub 121 and Widlund 1101 proposed the Generalized Conjugate Gradient, (GCG)

method for use when systems of the form Mz -d are "easy' to solve (much were so than the

original System):

LET ?) BE GIVEN AND SET x(-') 0. .sisPe

FOR m -0 STEP 1 UNTIL 'CONVERGENCE* ]D DflC IAN 03

* SOLVE WO)' - #0

* 1 us -0 A~1eiit Cndore
-j(+ M,(~~~,~ u> 0 M~at si Lai



Z(.+i) . M-1) + W +1J) + tim) -

The cost per iteration is one matrix multiply (by A), one solve of a system of the form M -d,

p Aand 2n multiplies.

The iterate x*"' can be characterized as the unique element in the affine Krylov subspace

P) + Span(JO), Kiioe, KYSUl, ..., K"-,') P +S

satisfying the Galerkin condition

(z, Ax(m)-b) - 0 for all z E S.

(see [101). Moreover, it can be shown that

- X + w(KXz(*-z) , (2)

where x,.(#) is an even (odd) polynomial of degree at most m for m even (odd) and r.(1) - I

(see (101).

The iterate x("') can also be characterized as the best approximation from a certain

m-dimensional affine subspace:'

arg min Ir-znM m even (= 2k)
-l~ u2I +(I+K)S.h

arg min Iy-zl m odd (- 2k+1)

(see 141). Equivalently,

x IIz'l-jiU I 5 M P,(KX/I*)-X)lm for all P. E P., X

where P. is the space of all real polynomial pr(p) of degree at most m satisfying p(l) - and

* p(-l) - (-)" (see 141). Taking p.(#) - T.(iA-p)Tjif-), where Tz) is them th

* Chebyshev polynomial, yields the error bound'

<2 f(S) 4  
3

-lAr + I-R(A)I-

where IRA) A- - + /4+. Taking p(,)- u ,(p) yields the iaegmasi

, liwe , , I,. i i buet Wpoimism to. fm the -s sinr faf Kryv Ki wm +m * (see ow
Tb. ean m ems w lint pve by Hagma, L. sad Youg M; Wkdlud 14 gIv a go U! we*er

bomud.

jI, iw- 
.
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A-' - < ()- UM < A I )-l for all M 1, (4)

which shows that the even and odd iterate. must exhibit the some .@~*tic rate of

convergence (cf. [10).

3. The CSP Method

For any symmetric positive definite matrix Q, the system (1) is equivalent to the

symmetrically preconditioned system

A2 s [Q-'/'AQ-/)} jQ'/2z) - [Q-'1' -

If we apply Craig's method (see [6)) to this auxiliary system, which is equivalent to applying the

conjugate gradient method to the normal equations

AA'# -A'#,
then the resulting method, Craig's method applied to the Symmetrically Preconditioned auxiliary

system (CSP), can be expressed directly in terms of A, x,b, and Q (se [6)):

LET y() (w X(*)) BE GIVEN
0) - 6 - AJO)

SOLVE Qr() -

SOLVE Qp(*) = p()

FOR k -0 STEP I UNTIL "CONVERGENCE DO

.+,0 _ /)+ p(h)
+ r( ) - Ap(")

SOLVE q() ,- r( )

0k+) AY+') + POA)

SOLVE Qe(il) - 0I)

1
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The cost per iteration is two matrix multiplies (by A and by A'), two solves of systems or the

form Ms - d, and fn multiplies, which is essentially the cost of two GCG iterations.

The iterate v(h) can be characterized as the unique element in the affune Krylov subspace

z(o) + (Q-'A') Span($6, (Q-'AQ-A') ( ), ... , (Q-IAQ-At)iF(O)) w - T

satisfying the orthogonality condition

(Z, V'-Z)Q - 0 for all E Tk.

Thus

) arg min IV-Zoe ,

and the standard analysis based on the Chebyshev polynomials yields the error bound

Iv()-xllQ < _ 2 _ Hz(°)-HQ , (5)

where p - (a+n)/(a-1) and x is the condition number of A.

If Q - M, then

+ - + (I+K) Span(S), K/), ... , O-b2S)) x($-l(l+K)

and

V(k) - arg minR IW-4M • (6)

Moreover, since3 x 6 v'i, the error bound (5) reduces to (3).

But an even stronger relationship exists between GCG and CSP. If m i even (2 2k), then

w',(p) is even and wr(1) m I so that

*.(p)-- (l+tp) pis-( ) (-P)

where P,..4(p) is an even polynomial of degree at most 2k-2. Thus, by equatiem (2

9 she d umber of equvsiow is eve, them 0 uq sb 0 e In appr bemAd onm,



P)- P)- (I+Icb.I(KXI-KXxz*)-x)

7. - P)+ (I+K)pU2 z(Kj)

* i.e., P'), the best approximation to 2 from the affine subspace z(4)+(Ir+K)SzM, lies in the smaller

affine subspace P4+ T, But since vOk) is the best approximation to Z from x0+T. (see (8)), it

follows that P(k) - 1(k). Hageman, Luk, and Young (81 and Elman 151 give different proods that

the two methods are *virtually equivalent."

The cost of computing POh) is essentially the same as the cost of computing Pk However,

the odd iterates generated by GCG could be better approximations to x than the even iterates

(although by at most a constant factor in view of (4)). Since, in addition, GCG rqie

somewhat less storage, it is probably the better method.

4. Two-Level Methods

But what if systems of the form Mx - d are net easy to solve? Golub and Overton (7) have

proposed a modification' of CG in which the step

SO LVE MVm) .)

is replaced by

FIND SO M )' SATISFYNG VI4 (s~<1(IM,

where 0 < 6 < 1 is some constant! This is implemented using an inner iterative method to find

on the -mth outer iteration. Basing the stopping criterion on the size of the relative residual

has the effect of solving MSO) - r0) to increasing absolute accuracy as x()converges to x.

aWhile they were unable to analyse this two-level scheme, Golub and Overton [71 did analyze

a siila scemeusing the two-stage Richiardson method (also a three-terms recurrence) as the

outer iteration. As one would expect, taking 9 closer to 0 result in a larger number of inner

iteration per outer iteration and a smaller number of oue iterations; wheras taldng § clawe to

1 results in a smaller number of inne iteations per outer iteation but a larger number of outer

iterations. The sae behavior for the two-level C method can he seen in the numerical'

Dembo, EiSaSkA sa Sisiag (41 an*"s a similar .oedhagna to Newton's meshd for amnU.. qsupm of

The can S- 6 esn~edm to she errmAl (ICO meshed



P0

results presented in Section S.

One could take a similar approach with the CSP method. Since M is symmetric and positive

* ' definite, a logical choice for the inner iteration would be the preconditioned conjugate gradient

method with some preconditioning matrix Q (see 11)). But why use a two-level iteration at all

" a • when one can simply take Q - Q (instead of Q - M)? The numerical results presented in

Section 5 suggest that this approach is superior.

5. Numerical Results

In this section, we reproduce the numerical experiments reported by Golub and Overton 171
for the two-level GCG method and present the corresponding results for the CSP method.

Consider the elliptic partial differential equation

-Au + (OU), + 6U. + (,), + bur + -cu

subject to Dirichet boundary conditions on the unit square 0,1IXI[,1], where

e- 5C , l(x,) - 540", C(S,,) - toe +,1

and Az,y) and the boundary conditions are chosen to make the solution v(z,y) -

The five-point centered finite-difference discretization on a rectilinear grid with a interior

mesh points in each direction leads to a system of as linear equations in which Mu corresponds to

-Au + eu. Thus we use the fast Poisson solver HWSCRT from FISHPACK 191 as'a

preconditioning for CSP and for an inner preconditioned conjugate gradient iteration in the two-

level GCG scheme. In each case, the stopping criterion was r~")f < 10-8.

The numbers of (outer) iterations and Poisson solves are given in Table I and the number of

a Poisson solves is plotted against '6 in Figure 1. Clearly CSP is a better method than GCG for

this problem, even with the optimal choice of 6.

6. Conclusions

As we have seen, if systems of the form Ms - d are "ey' to solve, then GC is better than

* CSP. If not, then CSP is superior. Of course, it is not clear that either method is the best

possible for thi clan of problems.

'I

* .
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Table Is Number of (Outer) itendos and Poimon Solve.

a 1s n = 81

GCG: .0 88 86" .00100 86 266 89 279
.00158 86 250 89 270I .00251 86 247 89 261
.00398 37 238 41 265

.00681 38 226 41 244

.0100 8 218 42 286

.0158 89 209 42 216

.0251 40 198 43 209

.0398 41 193 45 196

.0631 44 175 47 181

.100 52 182 71 287

.158 135 398 273 761

CSP: 89 78 42 84

a = number of (outer) iterations
mp = number of Poisson solves

!(
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Figure Is Number of Pomono Solves vs. 6
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